
Arkady

Apr 13, 2019

Contents:

1 Dependencies 1

2 What Arkady IS 3

3 What Arkady IS NOT 5

4 What can I use Arkady to do? 7

5 Creating an Arkady interface 9

6 Sphinx documentation contents 11
6.1 Arkady Devices . 11
6.2 Arkady Listeners . 12

7 Indices and tables 13

Python Module Index 15

i

ii

CHAPTER 1

Dependencies

Arkady uses Python3’s built-in asyncio, so it supports and requires use of Python3.5+.

ZeroMQ is employed for socket communication, so pyzmq is required.

pyzmq

1

http://zeromq.org/
https://pyzmq.readthedocs.io/en/latest/
https://pyzmq.readthedocs.io/en/latest/

Arkady

2 Chapter 1. Dependencies

CHAPTER 2

What Arkady IS

The central problem Arkady seeks to solve is how to set up an interface to an arbitrary “device” and control it from
another process. This can be local or remote over a network; it uses ZeroMQ socket communication which is robust
and lightweight.

3

Arkady

4 Chapter 2. What Arkady IS

CHAPTER 3

What Arkady IS NOT

Though the Arkady library may provide some utilities for talking to Arkady applications. It does not intend to be the
central means by which you control said applications. Not because Arkady is lazy, but because Arkady wants to give
you freedom. Because ZeroMQ sockets are used for communication, you can communicate with Arkady application
interfaces in most major languages: Java, C++, Python, Javascript. . . all good!

5

Arkady

6 Chapter 3. What Arkady IS NOT

CHAPTER 4

What can I use Arkady to do?

You can use Arkady to separate the controller logic of a piece of software from the nitty-gritty of hardware integration.
This problem is why I wrote the code that turned into Arkady in the first place: I had an application that needed to
simultaneously interact with Arduinos, DMX, video, audio, sensors, and keep track of program control flow. Using
Arkady I was able to create a simple interface to all my devices in one program, and to write clean logic in another
program to leverage this interface.

You can use Arkady to put a network interface on a hardware device and save a lot of wiring. Today you can get a
Raspberry Pi Zero W for 5 USD, with a bit more added for peripherals, you can put almost anything with wired control
onto the network with Arkady economically.

7

Arkady

8 Chapter 4. What can I use Arkady to do?

CHAPTER 5

Creating an Arkady interface

Suppose I wish to be able to read the temperature of my Raspberry Pi from another computer on my network. This
command would do the trick from the command line: /opt/vc/bin/vcgencmd measure_temp so I want to
set up an Arkady device for it.

from arkady.devices import AsyncDevice
import subprocess

class RpiCPUTemp(AsyncDevice):
def handler(self, msg, *args, **kwargs):

if msg == 'get':
command returns bytestring like b"temp=47.8'C"
temp_out = subprocess.run(

['/opt/vc/bin/vcgencmd',
'measure_temp'],

capture_output=True).stdout.decode('utf-8')
extract temperature string
temperature = temp_out.split('=')[1].rstrip()
return temperature

else:
return 'Unrecognized msg. Must be "get"'

Now I need to create an Arkady application to make use of this custom “device”.

from arkady import Application

class RpiCPUTempApp(Application):
def config(self):

"""This is called as the last step in setup for the Application"""
Creates the device and gives it the name 'temp'
self.add_device(RpiCPUTemp, 'temp')
Creates a router type listener and listens on port 5555
self.add_router(bind_to='tcp://*:5555')

(continues on next page)

9

Arkady

(continued from previous page)

my_app = RpiCPUTempApp()
my_app.run() # blocks until terminated

So now this application will wait for messages. Any message beginning with the word temp will be referred to the
RPiCPUTemp device. The message after the name temp will be give to the device method handler as the msg argument.
RPiCPUTemp.handler only recognizes the message “get” and will report an error if it gets something else. Otherwise
it runs the command and returns the temperature string.

Now, you can send messages via ZeroMQ in whatever language you please. Here’s a simple program in Python that
will do so.

import time
import zmq

RPI_URI = 'tcp://localhost:5555' # Same machine
RPI_URI = 'tcp://192.168.1.111:5555' # remote machine

context = zmq.Context()
socket = context.socket(zmq.REQ) # Request type socket, expects replies
socket.connect(RPI_URI)

while True:
Send 'temp get'. First word is device name, remainder is message
socket.send_string('temp get')
Requests (must) receive replies. Print our reply
print(socket.recv_string())
time.sleep(5) # Sleep 5 seconds between temperature checks

10 Chapter 5. Creating an Arkady interface

CHAPTER 6

Sphinx documentation contents

6.1 Arkady Devices

“Device” is a loose term in Arkady. It represents a fundamental unit of interface and should generally map to a logical
unit of control. This could be interaction with an actual physical device or peripheral such as a sensor, a motor, an
Arduino, a DMX controller, etc. Or it could be something more virtual such as a set of system calls, internet/intranet
queries, a managed subprocess and more.

Two basic device patterns are implemented: SerialDevice and AsyncDevice. Use of SerialDevice is recommended
when the underlying work must be strictly serial (meaning non-parallel). AsyncDevice is suitable when multiple
executions of the handler can safely run simultaneously.

class arkady.devices.AsyncDevice(*args, **kwargs)

requests_runner()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

Returns

class arkady.devices.Device(*args, loop=None, **kwargs)
The Base Device from which all other devices derive, whether they have synchronous or asynchronous under-
lying work.

requests_runner()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

Returns

class arkady.devices.DummyAsyncDevice(*args, **kwargs)

class arkady.devices.DummySerialDevice(*args, **kwargs)

11

Arkady

class arkady.devices.SerialDevice(*args, **kwargs)

requests_runner()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

Returns

6.2 Arkady Listeners

arkady.listeners.router(application, bind_to=None)
The router listener handles asynchronous requests in the request-reply pattern. A request of type zmq.REQ
shall be given a reply of type zmq.REP

Parameters

• application –

• bind_to (string) – Network path on which to listen. Defaults to 'tcp://*:5555'

Returns

arkady.listeners.sub(application, connect_to=None, topics=None)
The sub listener handles asynchronous requests in the pub-sub pattern. A request of type zmq.PUB receives no
reply

Parameters

• application –

• connect_to (string) – A well-known network URI, like ‘tcp://192.168.1.200:5555’

• topics ([string]) – A list of topics as to subscribe to

Returns

12 Chapter 6. Sphinx documentation contents

tcp://192.168.1.200:5555

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

13

Arkady

14 Chapter 7. Indices and tables

Python Module Index

a
arkady.devices, 11
arkady.listeners, 12

15

Arkady

16 Python Module Index

Index

A
arkady.devices (module), 11
arkady.listeners (module), 12
AsyncDevice (class in arkady.devices), 11

D
Device (class in arkady.devices), 11
DummyAsyncDevice (class in arkady.devices), 11
DummySerialDevice (class in arkady.devices), 11

R
requests_runner() (arkady.devices.AsyncDevice

method), 11
requests_runner() (arkady.devices.Device

method), 11
requests_runner() (arkady.devices.SerialDevice

method), 12
router() (in module arkady.listeners), 12

S
SerialDevice (class in arkady.devices), 11
sub() (in module arkady.listeners), 12

17

	Dependencies
	What Arkady IS
	What Arkady IS NOT
	What can I use Arkady to do?
	Creating an Arkady interface
	Sphinx documentation contents
	Arkady Devices
	Arkady Listeners

	Indices and tables
	Python Module Index

