

Welcome to Arkady’s documentation!

Dependencies

Arkady uses Python3’s built-in asyncio, so it supports and
requires use of Python3.5+.

ZeroMQ [http://zeromq.org/] is employed for socket communication, so pyzmq [https://pyzmq.readthedocs.io/en/latest/] is required.

pyzmq [https://pyzmq.readthedocs.io/en/latest/]

What Arkady IS

The central problem Arkady seeks to solve is how to set up an interface to
an arbitrary “device” and control it from another process. This can be local or
remote over a network; it uses ZeroMQ socket communication which is robust
and lightweight.

What Arkady IS NOT

Though the Arkady library may provide some utilities for talking to Arkady
applications. It does not intend to be the central means by
which you control said applications. Not because Arkady is lazy, but because
Arkady wants to give you freedom. Because ZeroMQ sockets are used for
communication, you can communicate with Arkady application interfaces in
most major languages: Java, C++, Python, Javascript… all good!

What can I use Arkady to do?

You can use Arkady to separate the controller logic of a piece of software from
the nitty-gritty of hardware integration. This problem is why I wrote the code
that turned into Arkady in the first place: I had an application that needed to
simultaneously interact with Arduinos, DMX, video, audio, sensors, and keep
track of program control flow. Using Arkady I was able to create a simple
interface to all my devices in one program, and to write clean logic
in another program to leverage this interface.

You can use Arkady to put a network interface on a hardware device and save a
lot of wiring. Today you can get a Raspberry Pi Zero W for 5 USD, with a bit
more added for peripherals, you can put almost anything with wired control
onto the network with Arkady economically.

Creating an Arkady interface

Suppose I wish to be able to read the temperature of my Raspberry Pi from
another computer on my network. This command would do the trick from the
command line: /opt/vc/bin/vcgencmd measure_temp so I want to set up an
Arkady device for it.

from arkady.devices import AsyncDevice
import subprocess

class RpiCPUTemp(AsyncDevice):
 def handler(self, msg, *args, **kwargs):
 if msg == 'get':
 # command returns bytestring like b"temp=47.8'C"
 temp_out = subprocess.run(
 ['/opt/vc/bin/vcgencmd',
 'measure_temp'],
 capture_output=True).stdout.decode('utf-8')
 # extract temperature string
 temperature = temp_out.split('=')[1].rstrip()
 return temperature
 else:
 return 'Unrecognized msg. Must be "get"'

Now I need to create an Arkady application to make use of this custom “device”.

from arkady import Application

class RpiCPUTempApp(Application):
 def config(self):
 """This is called as the last step in setup for the Application"""
 # Creates the device and gives it the name 'temp'
 self.add_device(RpiCPUTemp, 'temp')
 # Creates a router type listener and listens on port 5555
 self.add_router(bind_to='tcp://*:5555')

my_app = RpiCPUTempApp()
my_app.run() # blocks until terminated

So now this application will wait for messages. Any message beginning with the
word temp will be referred to the RPiCPUTemp device. The message after the
name temp will be give to the device method handler as the msg
argument. RPiCPUTemp.handler only recognizes the message “get” and will
report an error if it gets something else. Otherwise it runs the command and
returns the temperature string.

Now, you can send messages via ZeroMQ in whatever language you please. Here’s
a simple program in Python that will do so.

import time
import zmq

RPI_URI = 'tcp://localhost:5555' # Same machine
RPI_URI = 'tcp://192.168.1.111:5555' # remote machine

context = zmq.Context()
socket = context.socket(zmq.REQ) # Request type socket, expects replies
socket.connect(RPI_URI)

while True:
 # Send 'temp get'. First word is device name, remainder is message
 socket.send_string('temp get')
 # Requests (must) receive replies. Print our reply
 print(socket.recv_string())
 time.sleep(5) # Sleep 5 seconds between temperature checks

Sphinx documentation contents

Contents:

	Arkady Devices

	Arkady Listeners

Indices and tables

	Index

	Module Index

	Search Page

Arkady Devices

“Device” is a loose term in Arkady. It represents a fundamental unit of
interface and should generally map to a logical unit of control. This could be
interaction with an actual physical device or peripheral such as a sensor, a
motor, an Arduino, a DMX controller, etc. Or it could be something more virtual
such as a set of system calls, internet/intranet queries, a managed subprocess
and more.

Two basic device patterns are implemented: SerialDevice and AsyncDevice.
Use of SerialDevice is recommended when the underlying work must
be strictly serial (meaning non-parallel). AsyncDevice is suitable when
multiple executions of the handler can safely run simultaneously.

	
class arkady.devices.AsyncDevice(*args, **kwargs)

	
	
requests_runner()

	Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

	Returns

	

	
class arkady.devices.Device(*args, loop=None, **kwargs)

	The Base Device from which all other devices derive, whether they have
synchronous or asynchronous underlying work.

	
requests_runner()

	Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

	Returns

	

	
class arkady.devices.DummyAsyncDevice(*args, **kwargs)

	

	
class arkady.devices.DummySerialDevice(*args, **kwargs)

	

	
class arkady.devices.SerialDevice(*args, **kwargs)

	
	
requests_runner()

	Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

	Returns

	

Arkady Listeners

	
arkady.listeners.router(application, bind_to=None)

	The router listener handles asynchronous requests in the request-reply
pattern. A request of type zmq.REQ shall be given a reply of type zmq.REP

	Parameters

	
	application –

	bind_to (string) – Network path on which to listen. Defaults to 'tcp://*:5555'

	Returns

	

	
arkady.listeners.sub(application, connect_to=None, topics=None)

	The sub listener handles asynchronous requests in the pub-sub
pattern. A request of type zmq.PUB receives no reply

	Parameters

	
	application –

	connect_to (string) – A well-known network URI, like ‘tcp://192.168.1.200:5555’

	topics ([string]) – A list of topics as to subscribe to

	Returns

	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 arkady	

 	
 	
 arkady.devices	

 	
 	
 arkady.listeners	

Index

 A
 | D
 | R
 | S

A

 	
 	arkady.devices (module)

 	
 	arkady.listeners (module)

 	AsyncDevice (class in arkady.devices)

D

 	
 	Device (class in arkady.devices)

 	
 	DummyAsyncDevice (class in arkady.devices)

 	DummySerialDevice (class in arkady.devices)

R

 	
 	requests_runner() (arkady.devices.AsyncDevice method)

 	(arkady.devices.Device method)

 	(arkady.devices.SerialDevice method)

 	
 	router() (in module arkady.listeners)

S

 	
 	SerialDevice (class in arkady.devices)

 	
 	sub() (in module arkady.listeners)

 nav.xhtml

 Table of Contents

 		
 Welcome to Arkady’s documentation!

 		
 Arkady Devices

 		
 Arkady Listeners

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

