Arkady

Apr 16, 2019

Contents:

1 Dependencies 1
2 What Arkady IS 3
3 What Arkady IS NOT 5
4 What can I use Arkady to do? 7
5 Creating an Arkady interface 9
6 Sphinx documentation contents 11
6.1 Installing Arkady L e e e e e e 11
6.2 Getting Started with Arkady e 12
6.3 COMPONENLS . . v v v v v e 17
6.4 Arkady Listeners L e e e e e e e e e e e e e e 17
7 Indices and tables 19

Python Module Index 21

CHAPTER 1

Dependencies

Arkady uses Python3’s built-in asyncio, so it supports and requires use of Python3.5+.

ZeroMQ is employed for socket communication, so pyzmq is required.

http://zeromq.org/
https://pyzmq.readthedocs.io/en/latest/

Arkady

2 Chapter 1. Dependencies

CHAPTER 2

What Arkady IS

The central problem Arkady seeks to solve is how to set up an interface to an arbitrary “component” and control it
from another process. This can be local or remote over a network; it uses ZeroMQ socket communication which is
robust and lightweight.

Arkady

4 Chapter 2. What Arkady IS

CHAPTER 3

What Arkady IS NOT

Though the Arkady library may provide some utilities for talking to Arkady applications. It does not intend to be the
central means by which you control said applications. Not because Arkady is lazy, but because Arkady wants to give
you freedom. Because ZeroMQ sockets are used for communication, you can communicate with Arkady application
interfaces in most major languages: Java, C++, Python, Javascript... all good!

Arkady

6 Chapter 3. What Arkady IS NOT

CHAPTER 4

What can | use Arkady to do?

You can use Arkady to separate the controller logic of a piece of software from the nitty-gritty of hardware integration.
This problem is why I wrote the code that turned into Arkady in the first place: I had an application that needed to
simultaneously interact with Arduinos, DMX, video, audio, sensors, and keep track of program control flow. Using
Arkady I was able to create a simple interface to all my components in one program, and to write clean logic in another
program to leverage this interface.

You can use Arkady to put a network interface on a hardware component and save a lot of wiring. Today you can
get a Raspberry Pi Zero W for 5 USD, with a bit more added for peripherals, you can put almost anything with wired
control onto the network with Arkady economically.

Arkady

8 Chapter 4. What can | use Arkady to do?

CHAPTER B

Creating an Arkady interface

Suppose I wish to be able to read the temperature of my Raspberry Pi from another computer on my network. This
command would do the trick from the command line: /opt/vc/bin/vcgencmd measure_temp so I want to
set up an Arkady component for it.

from arkady.components import AsyncComponent
import subprocess

class RpiCPUTemp (AsyncComponent) :
def handler(self, msg, *args, xxkwargs):
if msg == 'get':
command returns bytestring like b"temp=47.8'C"
temp_out = subprocess.run/(
['/opt/vc/bin/vcgencmd',
'measure_temp'],
capture_output=True) .stdout.decode ('utf-8")
extract temperature string
temperature temp_out.split ('=") [1].rstrip()
return temperature
else:
return 'Unrecognized msg. Must be "get"'

Now I need to create an Arkady application to make use of this custom “component”.

from arkady import Application

class RpiCPUTempApp (Application) :
def config(self):
"""This is called as the last step in setup for the Application"""
Creates the component and gives it the name 'temp'
self.add_component (RpiCPUTemp, 'temp')
Creates a router type listener and listens on port 5555
self.add_router (bind_to="'tcp://*:5555")

(continues on next page)

Arkady

(continued from previous page)

my_app = RpiCPUTempApp ()
my_app.run() # blocks until terminated

So now this application will wait for messages. Any message beginning with the word femp will be referred to the
RPiCPUTemp component. The message after the name temp will be give to the component method handler as the msg
argument. RPiCPUTemp.handler only recognizes the message “get” and will report an error if it gets something else.
Otherwise it runs the command and returns the temperature string.

Now, you can send messages via ZeroMQ in whatever language you please. Here’s a simple program in Python that
will do so.

import time
import zmg

RPI_URI = 'tcp://localhost:5555' # Same machine
RPI_URI = 'tcp://192.168.1.111:5555" # remote machine
context = zmqg.Context ()

socket = context.socket (zmg.REQ) # Request type socket, expects replies
socket .connect (RPI_URI)

while True:
Send 'temp get'. First word is component name, remainder 1is message
socket .send_string('temp get')
Requests (must) receive replies. Print our reply
print (socket.recv_string())
time.sleep (5) # Sleep 5 seconds between temperature checks

10 Chapter 5. Creating an Arkady interface

CHAPTER O

Sphinx documentation contents

6.1 Installing Arkady

Arkady is still in early development and I have not issued a release on PyPI, so downloading and installing from source
on GitHub is the recommended course of action currently.

https://github.com/SavinaRoja/arkady

Arkady should be installed with Python of version 3.5 or greater, as this is when asyncio was introduced. Arkady
makes use of asyncio internally for concurrent, non-blocking function. You can write Arkady components to take
advantage of asyncio, but more on that later. All references to python and pip in commands are assumed to be
for that version or later.

Installation is simple once you have downloaded the source, just navigate to the base directory of the source code and
perform:

’python setup.py install

or

’pip install .

6.1.1 Development Installation

If you are looking to experiment with modifying Arkady, you will want to install it in so-called “development mode”
using the —e flag Creating and working in a virtual environment is simple and recommended, here it is in bash:

python -m venv venv
source venv/bin/activate
pip install -e .

and for Windows:

11

https://github.com/SavinaRoja/arkady

Arkady

python -m venv venv
.\venv\Scripts\activate
pip install -e

6.2 Getting Started with Arkady

The first step in working with Arkady is to think about what “action” you wish to make available for networked
(websocket from another machine) or simply interprocess control. Let’s start with something simple and accessible, a
generic interface to Nanpy, all you need to work along is an Arduino.

Nanpy is a great prototyping tool that lets you interface with an Arduino over a serial connection to control and read
pins. Setup and usage will be covered in more detail below.

6.2.1 Choosing a listener

A listener is responsible for “listening” for external input, and at present there are two in Arkady: router and sub.
The router handles asynchronous request-reply interaction and is best to use when you need to return information to a
requester, or at least provide acknowledgment of receipt. The sub handles publish-subscribe type interaction which is
a one-way kind of communication.

Because Nanpy permits reading the value of a pin, and I’ll want to be able to send this data back to a requester, I'm
going to add a router to my Arkady Application.

my_application.py
from arkady import Application
class MyApplication (Application):

def config(self):
self.add_router (bind_to="tcp://*:5555")

The method config gets called during creation of the application and is a good place to put registrations of listeners
and (as we’ll address in a moment) components. add_router will set up a router listener for the application, and we
have explicitly passed bind_to="tcp://+:5555" which instructs the added router to listen on port 5555 (this is
also the default if you don’t specify).

This application alone won’t do anything until we add at least one component to it.

6.2.2 Creating a component

The Nanpy interface has four main functions which we will wish to make accessible through the application:
digitalRead, analogRead, digitalWrite, and analogWrite. So let’s create a component that imple-
ments those actions.

There are two central base components in Arkady from which to derive: SerialComponent and
AsyncComponent. Arkady handles concurrency so it’s possible for more than one message to come in for a com-
ponent and run simultaneously. This can be a problem in some cases, as in this case where we should only allow one
message exchange over the USB to the Arduino at one time. So we’ll choose SerialComponent which ensures
serial (not concurrent) execution of jobs.

12 Chapter 6. Sphinx documentation contents

https://github.com/nanpy/nanpy

Arkady

from arkady.components import SerialComponent
from nanpy import SerialManager, ArduinoApi

class GenericNanpy (SerialComponent) :

def _ _init__ (self, port, =*args, xxkwargs):
super (GenericNanpy, self).__init__ (xargs, =xkwargs)
self._serial_manager = SerialManager (device=port, baudrate=115200)

self.ardu = ArduinoApi (self._serial_manager)

def analog_read(self, pin_number, »_words):
"""Read the pin in analog mode"""
self.ardu.pinMode (pin_number, self.ardu.INPUT)
return self.ardu.analogRead (pin_number)

def digital_read(self, pin_number, »*_words):
"""Read the pin in digital mode"""
self.ardu.pinMode (pin_number, self.ardu.INPUT)
return self.ardu.digitalRead (pin_number)

def analog _write(self, pin_number, value, »*_words):
"""Write the pin in analog mode to value"""
try:
value = int (value)
except ValueError:
return 'ERROR: Got a value that could not be treated as integer'
self.ardu.pinMode (pin_number, self.ardu.OUTPUT)
self.ardu.analogWrite (pin_number, value)

def digital_ write(self, pin_number, value, *_words):
"""Write the pin HIGH if value is 'high' otherwise LOW."""
self.ardu.pinMode (pin_number, self.ardu.OUTPUT)
if value == 'high':
self.ardu.digitalWrite (pin_number, self.ardu.HIGH)
else:
self.ardu.digitalWrite (pin_number, self.ardu.LOW)

In the __init___ method we initialize the Nanpy ArduinoApi on the specified port In the methods
analog_read,digital_read, analog_write,and digital_write we provide Nanpy functionality.

The next step is to write a message handler for the component. The application’s listeners will pass messages received
along to this method.

class GenericNanpy (SerialComponent) :

def handler (self, msg, xargs, =*xkwargs):
"""Handle an inbound message. Returned values go back as reply."""

word_map = {
'dwrite': self.digital_write,
'awrite': self.analog_write,
'dread': self.digital_read,
'aread': self.analog_read,

}
words = msg.split ()
if len(words) < 2: # Check for too short message

(continues on next page)

6.2. Getting Started with Arkady 13

Arkady

(continued from previous page)

return 'ERROR: message must contain at least 2 words!'
key_word = words[0]
try:
pin = int (words[1])
except ValueError:
return 'ERROR: got non-int for pin number {}'.format (words[1l])
if key_word not in word_map: # Check if we recognize the first word
return 'ERROR: not one of the known functions, {}'.format (word_map.keys())
try:
Call the corresponding method
ret_val = word_map[key_word] (pin, *words[2:])
if ret_val is not None:

ret_val = str(ret_val)
return ret_val
except:
return 'ERROR: "{}" failed, maybe a bad message or connection'.format (msqg)

This handler method does the job of interpreting messages so that action may be taken, along with some error
handling. Care is taken to return the results of the called methods, as the returned string values will get passed back to
a client of our Arkady application as the body of a reply message, this will be addressed further below.

Now that our custom component has been implemented, we wish to add it to our application and register it so that
messages may be passed to it. Let’s update my_application.py:

my_application.py
from arkady import Application
ARDUINO_PORT = '/dev/ttyUSBO' # On Windows this 1s more like "COM3"
class MyApplication (Application):
def config(self):

self.add_component ('nanpy', GenericNanpy, ARDUINO_PORT)
self.add_router (bind_to="tcp://*:5555")

This addition to config tells the application that when the listeners receive messages, if the first word of the message
is “nanpy” then the message should go to an instance of GenericNanpy, created once for the application with
GenericNanpy (ARDUINO_PORT).

Now the application is completed, and here it is all together:

#!/usr/bin/env python3

mwn

Demonstration of a very generic Arkady interface to NanPy.

Direct dependencies are: arkady, nanpy

Indirect depencences are: pyserial, pyzmqg
mmn

from arkady import Application
from arkady.components import SerialComponent

from nanpy import SerialManager, ArduinoApi

ARDUINO_PORT = '/dev/ttyUSBO' # On Windows this 1s more like "COM3"

(continues on next page)

14 Chapter 6. Sphinx documentation contents

Arkady

(continued from previous page)

class GenericNanpy (SerialComponent) :

def

def

def

def

def

def

__init__ (self, port, =*args, =**kwargs):
super (GenericNanpy, self).__init__ (xargs, x»xkwargs)
self._serial_manager = SerialManager (device=port, baudrate=115200)

self.ardu = ArduinoApi (self._serial _manager)

analog_read(self, pin_number, »*_words):
"""Read the pin in analog mode"""
self.ardu.pinMode (pin_number, self.ardu.INPUT)
return self.ardu.analogRead (pin_number)

digital_read(self, pin_number, +*_words):
"""Read the pin in digital mode"""
self.ardu.pinMode (pin_number, self.ardu.INPUT)
return self.ardu.digitalRead (pin_number)

analog_write(self, pin_number, value, *_words):
"""Write the pin in analog mode to value"""
try:

value = int (value)
except ValueError:

return 'ERROR: Got a value that could not be treated as integer'
self.ardu.pinMode (pin_number, self.ardu.OUTPUT)
self.ardu.analogWrite (pin_number, value)

digital_write(self, pin_number, value, *_words):
"""Write the pin HIGH if value is 'high' otherwise LOW."""
self.ardu.pinMode (pin_number, self.ardu.OUTPUT)
if value == 'high':

self.ardu.digitalWrite (pin_number, self.ardu.HIGH)
else:

self.ardu.digitalWrite (pin_number, self.ardu.LOW)

handler (self, msg, =*args, =**kwargs):
"""Handle an inbound message. Returned values go back as reply."""

word_map = {
'dwrite': self.digital_write,
'awrite': self.analog_write,

'dread': self.digital_read,
'aread': self.analog_read,
}
words = msg.split ()
if len(words) < 2: # Check for too short message
return 'ERROR: message must contain at least 2 words!'
key_word = words[0]
try:
pin = int (words([1])
except ValueError:
return 'ERROR: got non-int for pin number {}'.format (words[1l])
if key_word not in word_map: # Check if we recognize the first word
return 'ERROR: not one of the known functions, {)'.format (word_map.keys())
try:
Call the corresponding method
ret_val = word_mapl[key_word] (pin, *words[2:])
if ret_val is not None:

(continues on next page)

6.2. Getting Started with Arkady 15

Arkady

(continued from previous page)

ret_val = str(ret_val)
return ret_val
except:
return 'ERROR: "{}" failed, maybe a bad message or connection'.format (msg)

class MyApplication (Application):
def config(self):
self.add_component ('nanpy', GenericNanpy, ARDUINO_PORT)
self.add_router (bind_to="tcp://*:5555")

MyApplication () .run ()

6.2.3 A Client for our Arkady Application

It should be noted, that because Arkady makes use of ZeroMQ, a client can be written in nearly any language as bind-
ings are widely implemented. The following example is simply an example in Python using PyZMQ. It is interactive
so that you might test out sending arbitrary messages to your Arduino (via Nanpy, via Arkady!).

#!/usr/bin/env python3

mwn

Demonstration of a program controlling the very generic Arkady interface to
NanPy.

Direct dependencies are: pyzmg

mwn

import zmg

NANPY_ADRRESS = 'tcp://localhost:5555" # replace localhost with IP if remote
context = zmg.Context ()
sock = context.socket (zmg.REQ)

sock.connect (NANPY_ADRRESS)

while True:
msg = input ('Send a message to the Nanpy device: ')
set first word as "nanpy" so message goes to our registered component

sock.send_string('nanpy ' + msg)
print ('Waiting for reply.')
reply = sock.recv_string()

print ('Got: ' + reply)

6.2.4 A Quick Guide to Setting up Nanpy

Using Nanpy from your computer is as simple as:

pip install nanpy

To put the corresponding firmware on your Arduino, you can get a copy of this firmware with the following command.
These instructions are also outlined there.

16 Chapter 6. Sphinx documentation contents

https://github.com/nanpy/nanpy-firmware

Arkady

git clone https://github.com/nanpy/nanpy-firmware.git

Then change directories to the subsequent nanpy-firmware directory and execute ./configure.sh. Then
copy the nanpy-firmware/Nanpy directory into your Arduino sketchbook directory.

Plug in your Arduino, start the Arduino IDE, configure your boardset and port, open the Nanpy module from the
sketchbook, and then Upload. Assuming everything went well, your Arduino should be ready for Nanpy control.

6.3 Components

A Component represents a fundamental unit of interface and should generally map to a logical unit of control. This
could be interaction with an actual physical device or peripheral such as a sensor, a motor, an Arduino, a DMX
controller, etc. Or it could be something more virtual such as a set of system calls, internet/intranet queries, a managed
subprocess and more.

Two basic device patterns are implemented: SerialComponent and AsyncComponent. Use of SerialComponent is
recommended when the underlying work must be strictly serial (meaning non-parallel). AsyncComponent is suitable
when multiple executions of the handler can safely run simultaneously.

class arkady.components.AsyncComponent (*args, **kwargs)

requests_runner ()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.
Returns

class arkady.components.Component (*args, loop=None, **kwargs)
The Base Component from which all other devices derive, whether they have synchronous or asynchronous
underlying work.

requests_runner ()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.
Returns
class arkady.components.DummyAsyncDevice (*args, **kwargs)
class arkady.components.DummySerialDevice (*args, **kwargs)

class arkady.components.SerialComponent (*args, **kwargs)

requests_runner ()
Responsible for taking jobs out of the jobs queue and executing them.

Not implemented in this base class, must be overridden.

Returns

6.4 Arkady Listeners

arkady.listeners.router (application, bind_to=None)
The router listener handles asynchronous requests in the request-reply pattern. A request of type zmq.REQ

6.3. Components 17

Arkady

shall be given a reply of type zmq.REP
Parameters
* application -
* bind_to (string)— Network path on which to listen. Defaults to 'tcp://*:5555"
Returns

arkady.listeners.sub (application, connect_to=None, topics=None)
The sub listener handles asynchronous requests in the pub-sub pattern. A request of type zmg.PUB receives no

reply
Parameters
* application -
* connect_to (string)— A well-known network URI, like ‘tcp://192.168.1.200:5555°
* topies ([string])— A list of topics as to subscribe to
Returns

18 Chapter 6. Sphinx documentation contents

tcp://192.168.1.200:5555

CHAPTER /

Indices and tables

* genindex
* modindex

e search

19

Arkady

20 Chapter 7. Indices and tables

Python Module Index

a

arkady.components, 17
arkady.listeners, 17

21

Arkady

22 Python Module Index

Index

A

arkady.components (module), 17
arkady.listeners (module), 17
AsyncComponent (class in arkady.components), 17

C

Component (class in arkady.components), 17

D

DummyAsyncDevice (class in arkady.components), 17
DummySerialDevice (class in arkady.components),
17

R

requests_runner ()
(arkady.components.AsyncComponent
method), 17

requests_runner ()
(arkady.components. Component method),
17

requests_runner ()
(arkady.components.Serial Component
method), 17

router () (in module arkady.listeners), 17

S

SerialComponent (class in arkady.components), 17
sub () (in module arkady.listeners), 18

23

	Dependencies
	What Arkady IS
	What Arkady IS NOT
	What can I use Arkady to do?
	Creating an Arkady interface
	Sphinx documentation contents
	Installing Arkady
	Getting Started with Arkady
	Components
	Arkady Listeners

	Indices and tables
	Python Module Index

